747 Edltlon

: /ELAMSRl o NAVATHE

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 19

Query Optimization

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

= Query optimization
= Conducted by a query optimizer in a DBMS

» Goal: select best avallable strategy for executing
guery
= Based on information available

= Most RDBMSs use a tree as the internal
representation of a query

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 3

19.1 Query Trees and Heuristics for
Query Optimization

m Step 1: scanner and parser generate initial query
representation

m Step 2: representation is optimized according to
heuristic rules

s Step 3: query execution plan is developed

= Execute groups of operations based on access
paths available and files involved

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 4

Query Trees and Heuristics for Query
Optimization (cont'd.)

= Example heuristic rule
= Apply SELECT and PROJECT before JOIN
= Reduces size of files to be joined
s Query tree
= Represents relational algebra expression
= Query graph
= Represents relational calculus expression
s Example for Q2 on next slide

Q2: SELECT P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdate
FROM PROJECT P, DEPARTMENT D, EMPLOYEE E
WHERE P.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND

P.Plocation= “Stafford’;

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19-5

Query Trees and Query Graph
Corresponding to Q2

{a) n P.Pnumber,P.Dnum,E.Lname,E.Address E.Bdate
(3) |
& D.Mgr_ssn=E.Ssn
(2) ’f \\ —_
= P_Dnun’!jP_Eriumher RT:'%I_EJ
- m_— T~ _
Figure 19.1 Two query trees for O P Plocatior Staford (o) Deparvent |
the query Q2. (a) Query tree A '
corresponding to the relational —/
algebra eXpreSSion for QZ (b) (b) “P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdate
.. . . |
Inltlal (Canonlcal) query tree for P.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND P.Plocation="Stafford'
SQL query Q2. (c) Query graph b
for Q2. L T
T~ \E)
® ©
{c) [PPnumber, PDnum] [E.Lname, E.Address, E.Bdate]
= P.Dnum=D.Dnumber N D.Mgr_ssn=E.Ssn N
S '\D "kE,f'
P.Plocation="Stafford’
'I?‘Stafrc-rd \ﬂ

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19-6

Query Trees and Heuristics for Query
Optimization (cont'd.)

s Query tree represents a specific order of
operations for executing a query

= Preferred to query graph for this reason
= Query graph
= Relation nodes displayed as single circles
= Constants represented by constant nodes
»« Double circles or ovals
= Selection or join conditions represented as edges

= Attributes to be retrieved displayed in square
brackets

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19-7

Heuristic Optimization of Query
Trees

= Many different query trees can be used to
represent the query and get the same results
s Figure 19.1b shows initial tree for Q2
= Very inefficient - will never be executed

= Optimizer will transform into equivalent final query
tree

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 8

Query Transformation Example

Q: SELECT E.lLname
FROM EMPLOYEE E, WORKS_ON W, PROJECT P
WHERE P.Pname="Aquarius’ AND P.Pnumber=W.Pno AND E.Essn=W.Ssn
AND E.Bdate > 1957-12-31’;

(a) T name

GPname='Aquariu5' AND Pnumber=Pno AND Essn=Ssn AND Bdate>'1957-12-31’
|

.,-'-"f-- x -
P _PROJECT O
7 . I
T - - .
C_EMPLOYEE O CWORKS_ON

Figure 19.2 Steps in converting a query tree during heuristic
optimization. (a) Initial (canonical) query tree for SQL query Q.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19-9

Query Transformation Example
(cont'd.)

(b) TLname

O Phumber=Pno

- K S
= o
- -

OEssn=Ssn OPname="Aquarius’

/ X - {::_F;RDJ EC%___-::}

“Bdate>10571231 CWORKS OND

_EMPLOYEE >

Figure 19.2 Steps in converting a query tree during heuristic optimization
(b) Moving SELECT operations down the query tree.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 10

Query Transformation Example
(cont'd.)

(c) T Lname

C Essn=Ssn

|
X
x"f;{ \&“\
e g .

S Pnumber=Pno O Bdate>'1957-12-31"

X e
R

© Pname='Aquarius’ if";"'ul'_{_) RKS__C;H::}

|

f\;_ _RDJECI)

Figure 19.2 Steps in converting a query tree during heuristic optimization
(c) Applying the more restrictive SELECT operation first.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 19- 11

Query Transformation Example
(cont'd.)

(d) ™ Lname
iE55n|=Ssr_1_ ______
"Pru mberzﬁno c B[;;;Tgfi?_1 2-31'
gpnamelﬁ;;iug gwgﬁls,:?; CEMPLOYEE
CPROIECT

Figure 19.2 Steps in converting a query tree during heuristic optimization
(d) Replacing CARTESIAN PRODUCT and SELECT with JOIN operations.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 19- 12

Query Transformation Example
(cont'd.)

(e) T Lname
|
& Es:ﬁn:Ssn
T Esa?{f nSsr:,' Lname
“Prumb | p |
e e OBdate>'1957-12-31'
T Prumber T Egsnlpn.:.

| | EMPLOYEE O
? Phame="'Aquarius’ o — S —
L (_WORKS_ON

CPROIECT >

Figure 19.2 Steps in converting a query tree during heuristic optimization
(e) Moving PROJECT operations down the query tree.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 13

General Transformation Rules for
Rational Algebra Equations

s Some transformation rules useful in query
optimization
s» Cascade of 0

« Conjunctive selection condition can be broken up
iInto a cascade (sequence) of individual o operations

s Commutativity of o

s Cascade of it

» In @ sequence of m operations, all but the last one
can be ignored

s Commuting o with t

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 19- 14

Summary of Heuristics for Algebraic
Optimization

= Apply first the operations that reduce the size of
iIntermediate results
= Perform SELECT and PROJECT operations as

early as possible to reduce the number of tuples
and attributes

= The SELECT and JOIN operations that are most
restrictive should be executed before other similar
operations

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 15

19.2 Choice of Query Execution
Plans

= Materialized evaluation
= Result of an operation stored as temporary relation
= Pipelined evaluation

= Operation results forwarded directly to the next
operation in the query sequence

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 16

Nested Subquery Optimization

= Unnesting

= Process of removing the nested query and
converting the inner and outer guery into one block

= Queries involving a nested subguery connected
by IN or ANY connector can always be converted
Into a single block query

= Alternate technique

= Creating temporary result tables from subqueries
and using them in joins

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 19- 17

Subquery (View) Merging
Transformation

= |nline view
= FROM clause subquery
= View merging operation

= Merges the tables in the view with the tables from
the outer query block

= Views containing select-project-join operations are
considered simple views

« Can always be subjected to this type of view-
merging

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 18

Subquery (View) Merging
Transformation (cont'd.)

= Group-By view-merging

= Delaying the Group By operation after performing
joins may reduce the data subjected to grouping in
case the joins have low join selectivity

= Alternately, performing Group By early may reduce
the amount of data subjected to subsequent joins

= Optimizer determines whether to merge GROUP-
BY views based on estimated costs

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 19

Materialized Views

= View defined in database as a query
= Materialized view stores results of that query
« May be stored temporarily or permanently
= Optimization technique

= Using materialized views to avoid some of the
computation involved in the query

= Easier to read it when needed than recompute
from scratch

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 20

Incremental View Maintenance

= Update view incrementally by accounting for
changes that occurred since last update

= Join

= Selection

= Projection

= Intersection
= Aggregation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 19- 21

19.3 Use of Selectives in Cost-Based
Optimization

s Query optimizer estimates and compares costs of
guery execution using different strategies

= Chooses lowest cost estimate strategy
= Process suited to compiled queries
= Interpreted queries
= Entire process occurs at runtime
= Cost estimate may slow down response time

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 19- 22

Use of Selectives in Cost-Based
Optimization (cont'd.)

s Cost-based guery optimization approach

= For a given query subexpression, multiple
equivalence rules may apply

= Quantitative measure for evaluating alternatives
» Cost metric includes space and time requirements

= Design appropriate search strategies by keeping
cheapest alternatives and pruning costlier
alternatives

= Scope of query optimization is a query block

« Global query optimization involves multiple query
blocks

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 23

Use of Selectives in Cost-Based
Optimization (cont'd.)

s Cost components for query execution
= Access cost to secondary storage
= Disk storage cost
= Computation cost
= Memory usage cost
= Communication cost

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 19- 24

Catalog Information Used in Cost
Functions

= Information stored in DBMS catalog and used by
optimizer
= File size
= Organization
= Number of levels of each multilevel index
= Number of distinct values of an attribute

= Attribute selectivity

» Allows calculation of selection cardinality

= Average number of records that satisfy equality selection
condition on that attribute

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 25

Histograms

s [ables or data structures that record information
about the distribution of data

= RDBMS stores histograms for most important
attributes

700

600

500 ~

g- 400

of B

300

MNo.

200 ~

100 ~

30k—-40k 40k-70k 70k-120k 120k-200k 200k-500k
Salary

Figure 19.4 Histogram of salary in the relation EMPLOYEE

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 26

19.4 Cost Functions for SELECT
Operation

s Notation used in cost formulas

Cs;: Cost for method Si in block accesses

rx: Number of records (tuples) in a relation X

by: Number of blocks occupied by relation X (also referred to as b)
bfry: Blocking factor (i.e., number of records per block) in relation X
slg: Selectivity of an attribute A for a given condition

sA: Selection cardinality of the attribute being selected (= sl *r)

xA: Number of levels of the index for attribute A

b1 A: Number of first-level blocks of the index on attribute A

NDV (A, X): Number of distinct values of attribute A in relation X

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 19- 27

Cost Function for SELECT Operation
(cont'd.)

s S1: Linear search (brute force approach)
= Search all file blocks to retrieve all records
CSla:b
= For equality condition on a key attribute, on

average one-half the records are searched

b
Coyp=a
S1b—5

s S2: Binary search
C32=|092b+[bifr]-1

» Reduces to log,b if equality condition is on a key
attribute

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 28

Cost Function for SELECT Operation
(cont'd.)

s S3a: Using a primary index to retrieve a single
record

Ceg,=X+1

s S3b: Using a hash key to retrieve a single record
Coap= 1

s S4: Using an ordering index to retrieve multiple
records

_ b
Csa= X+

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 29

Cost Functions for SELECT
Operation (cont'd.)

s S5: Using a clustering index to retrieve multiple
records

Ces =X+ [b%]

s S6: Using a secondary (B+ tree) index
Cge, =X+ 1+s (worstcase)

b r :
Cogp, = X + =+ (for range queries)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 30

Cost Functions for SELECT
Operation (cont'd.)

= Dynamic programming
= Cost-based optimization approach
= Subproblems are solved only once

= Applies when a problem has subproblems that
themselves have subproblems

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 31

19.5 Cost Functions for the JOIN
Operation

= Cost functions involve estimate of file size that
results from the JOIN operation
= Join selectivity

= Ratio of the size of resulting file to size of the
CARTESIAN PRODUCT file

= Simple formula for join selectivity
js=1/ max (NDV (A, R), NDV (B,S))

= Join cardinality
je= (R S)|=js * |R[* [§]

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 32

Cost Functions for the JOIN
Operation (cont'd.)

= J1: Nested-loop join
= For three memory buffer blocks:
Cjy = br+ (br * bs) + ((s * [R[* |S])/bfrgs)
= For np memory buffer blocks:
Cpy = br+ (| br/(ng - 2) [* bg) + ((js * |R| * |S])/bfrgs)
s J2: Index-based nested-loop join

» For a secondary index with selection cardinality Sg
for join attribute B of S:

ngﬂ = II'R + (lRl * (IB +1 +SB)] + ((jﬁ * |R| * |S|)”§f?g5)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 33

Cost Functions for the JOIN
Operation (cont'd.)

= J3: Sort-merge join
= For files already sorted on the join attributes
Cy3a = b+ bs+ ((js * |R| * [S])/bfrgs)
= Cost of sorting must be added if sorting needed
= J4: Partition-hash join
Cja=3* (bp+ bs) + ((js * |R[* [S[)/bfrgs)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 34

Cost Functions for the JOIN
Operation (cont'd.)

= Join selectivity and cardinality for semi-join

SELECT COUNT(*)

FROM T1

WHERE T1L.X IN (SELECT T2.Y
FROM T2);

= Unnesting query above leads to semi-join

SELECT COUNT(*)
FROM T1, T2

= Join selectivity WHERE T1.X §= T2.Y;

js=MIN(1LNDV(Y, T2)/NDV(X, T1))
= Join cardinality
je=|T1|* js

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 19- 35

Cost Functions for the JOIN
Operation (cont'd.)

= Join selectivity and cardinality for anti-join

SELECT COUNT (¥)

FROM T1

WHERE T1.X NOT IN (SELECT T2.Y
FROM T2);

= Unnesting query above leads to anti-join

SELECT COUNT(*)
FROM T1, T2
WHERE T1.X A=T2.Y;

= Join selectivity
js=1-MIN(1,NDV(T2.y)/NDV(T1.x))

= Join cardinality
je=|T1*s

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 19- 36

Cost Functions for the JOIN
Operation (cont'd.)

= Multirelation queries and JOIN ordering choices
= Left-deep join tree
= Right-deep join tree
= Bushy join tree

No. of Left-Deep No. of Bushy No. of Bushy Trees
No. of Relations N Trees N! Shapes S(N) 2N-2)//(N—-1)!
2 2 1 2
3 6 2 12
4 24 5 120
5 120 14 1,680
6 720 42 30,240
7 5,040 132 665,280

Table 19.1 Number of permutations of left-deep and bushy join trees of n relations

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 37

Cost Functions for the JOIN
Operation (cont'd.)

= Physical optimization involves execution decision
at the physical level
= Cost-based physical optimization
= TOp-down approach
= Bottom-up approach

s Certain physical level heuristics make cost
optimizations unnecessary

= Example: for selections, use index scans
whenever possible

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 38

Cost Functions for the JOIN
Operation (cont'd.)

n Left-deep trees generally preferred
= Work well for common algorithms for join
= Able to generate fully pipelined plans

m Characteristics of dynamic programming
algorithm

= Optimal solution structure is developed
= Value of the optimal solution is recursively defined

= Optimal solution is computed and its value
developed in a bottom-up fashion

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 39

19.6 Example to lllustrate Cost-Based
Query Optimization

s Example: Consider Q2 below and query tree from
Figure 19.1(a) on slide 6

Q2: SELECT Pnumber, Dnum, Lname, Address, Bdate
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr_ssn=Ssn AND

Plocation="Stafford’;

= Information about the relations shown in Figure
19.6 (next slide)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 40

(a)

Figure 19.6 Sample
statistical information
for relations in Q2.

(a) Column information
(b) Table information
(c) Index information

(b)

(c)

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Table_name Column_name | Num_distinct | Low_value High_value

PROJECT Plocation 200 1 200

PROJECT Pnumber 2000 1 2000

PROJECT Dnum 50 1 50

DEPARTMENT | Dnumber 50 1 50

DEPARTMENT | Mgr_ssn 50 1 50

EMPLOYEE Ssn 10000 1 10000

EMPLOYEE Dno 50 1 50

EMPLOYEE Salary 500 1 500

Table name Num_rows Blocks

PROJECT 2000 100

DEPARTMENT 50 5

EMPLOYEE 10000 2000

Index_name Unigueness Blevel* Leaf blocks Distinct_keys
' PROJ_PLOC | NONUNIQUE 1 4 200

EMP_SSN UNIQUE 1 50 10000

EMP_SAL NONUNIQUE 1 50 500
*Blevel is the number of levels without the leaf level.

Slide 19-41

Example to lllustrate Cost-Based
Query Optimization (cont'd.)

= Assume optimizer considers only left-deep trees

= Evaluate potential join orders
= PROJECT ~ DEPARTMENT~EMPLOYEE
= DEPARTMENT >~ PROJECT>* EMPLOYEE
= DEPARTMENT~ EMPLOYEE ~PROJECT
= EMPLOYEE ~DEPARTMENT>~ PROJECT

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Sl [de 16- 42

19.7 Additional Issues Related
to Query Optimization

s Displaying the system’s query execution plan
» Oracle syntax
= EXPLAIN PLAN FOR <SQL query>
= IBM DB2 syntax
= EXPLAIN PLAN SELECTION [additional options]
FOR <SQL-query>
= SQL server syntax

« SET SHOWPLAN_TEXT ON or SET
SHOWPLAN_XML ON or SET SHOWPLAN_ALL
ON

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 43

Additional Issues Related
to Query Optimization (cont'd.)

= Size estimation of other operations
= Projection
= Set operations
= Aggregation
= Outer join
= Plan caching

= Plan stored by query optimizer for later use by
same queries with different parameters

= Top k-results optimization
= Limits strategy generation

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 44

19.8 An Example of Query
Optimization in Data Warehouses

m Star transformation optimization

s Goal: access a reduced set of data from the fact
table and avoid using a full table scan on it

= Classic star transformation
= Bitmap index star transformation

= Joining back

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 45

19.9 Overview of Query Optimization
In Oracle

= Physical optimizer is cost-based
m Scope Is a single query block

= Calculates cost based on object statistics,
estimated resource use and memory needed

= Global query optimizer

= Integrates logical transformation and physical
optimization phases to generate optimal plan for
entire query tree

= Adaptive optimization

= Feedback loop used to improve on previous
decisions

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 46

Overview of Query Optimization In
Oracle (cont'd.)

= Array processing

s Hints
= Specified by application developer
= Embedded in text of SQL statement

= Types: access path, join order, join method,
enabling or disabling a transformation

= Outlines used to preserve execution plans
= SQL plan management

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19- 47

19.10 Semantic Query Optimization

s Uses constraints specified on the database
schema

s Goal: modify one guery into another that is more
efficient to execute

Slide 19- 48

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.11 Summary

Query trees

Heuristic approaches used to improve efficiency

of query execution

Reorganization of query trees
Pipelining and materialized evaluation
Cost-based optimization approach
Oracle query optimizer

Semantic query optimization

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Slide 19- 49

