
Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

CHAPTER 19

Query Optimization

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Introduction

 Query optimization

 Conducted by a query optimizer in a DBMS

 Goal: select best available strategy for executing

query

 Based on information available

 Most RDBMSs use a tree as the internal

representation of a query

Slide 19- 3

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.1 Query Trees and Heuristics for

Query Optimization

 Step 1: scanner and parser generate initial query

representation

 Step 2: representation is optimized according to

heuristic rules

 Step 3: query execution plan is developed

 Execute groups of operations based on access

paths available and files involved

Slide 19- 4

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Trees and Heuristics for Query

Optimization (cont’d.)

 Example heuristic rule

 Apply SELECT and PROJECT before JOIN

 Reduces size of files to be joined

 Query tree

 Represents relational algebra expression

 Query graph

 Represents relational calculus expression

 Example for Q2 on next slide

Slide 19- 5

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Trees and Query Graph

Corresponding to Q2

Slide 19-6

Figure 19.1 Two query trees for

the query Q2. (a) Query tree

corresponding to the relational

algebra expression for Q2. (b)

Initial (canonical) query tree for

SQL query Q2. (c) Query graph

for Q2.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Trees and Heuristics for Query

Optimization (cont’d.)

 Query tree represents a specific order of

operations for executing a query

 Preferred to query graph for this reason

 Query graph

 Relation nodes displayed as single circles

 Constants represented by constant nodes

 Double circles or ovals

 Selection or join conditions represented as edges

 Attributes to be retrieved displayed in square

brackets

Slide 19- 7

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Heuristic Optimization of Query

Trees

 Many different query trees can be used to

represent the query and get the same results

 Figure 19.1b shows initial tree for Q2

 Very inefficient - will never be executed

 Optimizer will transform into equivalent final query

tree

Slide 19- 8

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Transformation Example

Slide 19- 9

Figure 19.2 Steps in converting a query tree during heuristic

optimization. (a) Initial (canonical) query tree for SQL query Q.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Transformation Example

(cont’d.)

Slide 19- 10

Figure 19.2 Steps in converting a query tree during heuristic optimization

(b) Moving SELECT operations down the query tree.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Transformation Example

(cont’d.)

Slide 19- 11

Figure 19.2 Steps in converting a query tree during heuristic optimization

(c) Applying the more restrictive SELECT operation first.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Transformation Example

(cont’d.)

Slide 19- 12

Figure 19.2 Steps in converting a query tree during heuristic optimization

(d) Replacing CARTESIAN PRODUCT and SELECT with JOIN operations.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Query Transformation Example

(cont’d.)

Slide 19- 13

Figure 19.2 Steps in converting a query tree during heuristic optimization

(e) Moving PROJECT operations down the query tree.

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

General Transformation Rules for

Rational Algebra Equations

Slide 19- 14

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Summary of Heuristics for Algebraic

Optimization

 Apply first the operations that reduce the size of

intermediate results

 Perform SELECT and PROJECT operations as

early as possible to reduce the number of tuples

and attributes

 The SELECT and JOIN operations that are most

restrictive should be executed before other similar

operations

Slide 19- 15

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.2 Choice of Query Execution

Plans

 Materialized evaluation

 Result of an operation stored as temporary relation

 Pipelined evaluation

 Operation results forwarded directly to the next

operation in the query sequence

Slide 19- 16

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Nested Subquery Optimization

 Unnesting

 Process of removing the nested query and

converting the inner and outer query into one block

 Queries involving a nested subquery connected

by IN or ANY connector can always be converted

into a single block query

 Alternate technique

 Creating temporary result tables from subqueries

and using them in joins

Slide 19- 17

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Subquery (View) Merging

Transformation

 Inline view

 FROM clause subquery

 View merging operation

 Merges the tables in the view with the tables from

the outer query block

 Views containing select-project-join operations are

considered simple views

 Can always be subjected to this type of view-

merging

Slide 19- 18

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Subquery (View) Merging

Transformation (cont’d.)

 Group-By view-merging

 Delaying the Group By operation after performing

joins may reduce the data subjected to grouping in

case the joins have low join selectivity

 Alternately, performing Group By early may reduce

the amount of data subjected to subsequent joins

 Optimizer determines whether to merge GROUP-

BY views based on estimated costs

Slide 19- 19

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Materialized Views

 View defined in database as a query

 Materialized view stores results of that query

 May be stored temporarily or permanently

 Optimization technique

 Using materialized views to avoid some of the

computation involved in the query

 Easier to read it when needed than recompute

from scratch

Slide 19- 20

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Incremental View Maintenance

 Update view incrementally by accounting for

changes that occurred since last update

 Join

 Selection

 Projection

 Intersection

 Aggregation

Slide 19- 21

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.3 Use of Selectives in Cost-Based

Optimization

 Query optimizer estimates and compares costs of

query execution using different strategies

 Chooses lowest cost estimate strategy

 Process suited to compiled queries

 Interpreted queries

 Entire process occurs at runtime

 Cost estimate may slow down response time

Slide 19- 22

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Use of Selectives in Cost-Based

Optimization (cont’d.)

 Cost-based query optimization approach

 For a given query subexpression, multiple

equivalence rules may apply

 Quantitative measure for evaluating alternatives

 Cost metric includes space and time requirements

 Design appropriate search strategies by keeping

cheapest alternatives and pruning costlier

alternatives

 Scope of query optimization is a query block

 Global query optimization involves multiple query

blocks

Slide 19- 23

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Use of Selectives in Cost-Based

Optimization (cont’d.)

 Cost components for query execution

 Access cost to secondary storage

 Disk storage cost

 Computation cost

 Memory usage cost

 Communication cost

Slide 19- 24

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Catalog Information Used in Cost

Functions

 Information stored in DBMS catalog and used by

optimizer

 File size

 Organization

 Number of levels of each multilevel index

 Number of distinct values of an attribute

 Attribute selectivity

 Allows calculation of selection cardinality

 Average number of records that satisfy equality selection

condition on that attribute

Slide 19- 25

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Histograms

 Tables or data structures that record information

about the distribution of data

 RDBMS stores histograms for most important

attributes

Slide 19- 26

Figure 19.4 Histogram of salary in the relation EMPLOYEE

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.4 Cost Functions for SELECT

Operation

 Notation used in cost formulas

Slide 19- 27

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Function for SELECT Operation

(cont’d.)

 S1: Linear search (brute force approach)

 Search all file blocks to retrieve all records

CS1a=b

 For equality condition on a key attribute, on

average one-half the records are searched

CS1b=
𝑏

2

 S2: Binary search

CS2=log2b+[
𝑠

𝑏𝑓𝑟
]-1

 Reduces to log2b if equality condition is on a key

attribute

Slide 19- 28

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Function for SELECT Operation

(cont’d.)

 S3a: Using a primary index to retrieve a single

record

CS3a = x + 1

 S3b: Using a hash key to retrieve a single record

CS3b = 1

 S4: Using an ordering index to retrieve multiple

records

CS4 = x +
𝑏

2

Slide 19- 29

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Functions for SELECT

Operation (cont’d.)

Slide 19- 30

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Functions for SELECT

Operation (cont’d.)

 Dynamic programming

 Cost-based optimization approach

 Subproblems are solved only once

 Applies when a problem has subproblems that

themselves have subproblems

Slide 19- 31

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.5 Cost Functions for the JOIN

Operation

 Cost functions involve estimate of file size that

results from the JOIN operation

 Join selectivity

 Ratio of the size of resulting file to size of the

CARTESIAN PRODUCT file

 Simple formula for join selectivity

 Join cardinality

Slide 19- 32

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Functions for the JOIN

Operation (cont’d.)

 J1: Nested-loop join

 For three memory buffer blocks:

 For nB memory buffer blocks:

 J2: Index-based nested-loop join

 For a secondary index with selection cardinality SB

for join attribute B of S:

Slide 19- 33

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Functions for the JOIN

Operation (cont’d.)

 J3: Sort-merge join

 For files already sorted on the join attributes

 Cost of sorting must be added if sorting needed

 J4: Partition-hash join

Slide 19- 34

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Functions for the JOIN

Operation (cont’d.)

 Join selectivity and cardinality for semi-join

 Unnesting query above leads to semi-join

 Join selectivity

 Join cardinality

Slide 19- 35

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Functions for the JOIN

Operation (cont’d.)

 Join selectivity and cardinality for anti-join

 Unnesting query above leads to anti-join

 Join selectivity

 Join cardinality

Slide 19- 36

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Functions for the JOIN

Operation (cont’d.)

 Multirelation queries and JOIN ordering choices

 Left-deep join tree

 Right-deep join tree

 Bushy join tree

Slide 19- 37

Table 19.1 Number of permutations of left-deep and bushy join trees of n relations

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Functions for the JOIN

Operation (cont’d.)

 Physical optimization involves execution decision

at the physical level

 Cost-based physical optimization

 Top-down approach

 Bottom-up approach

 Certain physical level heuristics make cost

optimizations unnecessary

 Example: for selections, use index scans

whenever possible

Slide 19- 38

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Cost Functions for the JOIN

Operation (cont’d.)

 Left-deep trees generally preferred

 Work well for common algorithms for join

 Able to generate fully pipelined plans

 Characteristics of dynamic programming

algorithm

 Optimal solution structure is developed

 Value of the optimal solution is recursively defined

 Optimal solution is computed and its value

developed in a bottom-up fashion

Slide 19- 39

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.6 Example to Illustrate Cost-Based

Query Optimization

 Example: Consider Q2 below and query tree from

Figure 19.1(a) on slide 6

 Information about the relations shown in Figure

19.6 (next slide)

Slide 19- 40

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe Slide 19-41

Figure 19.6 Sample

statistical information

for relations in Q2.

(a) Column information

(b) Table information

(c) Index information

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Example to Illustrate Cost-Based

Query Optimization (cont’d.)

 Assume optimizer considers only left-deep trees

 Evaluate potential join orders

 PROJECT DEPARTMENT EMPLOYEE

 DEPARTMENT PROJECT EMPLOYEE

 DEPARTMENT EMPLOYEE PROJECT

 EMPLOYEE DEPARTMENT PROJECT

Slide 16- 42

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.7 Additional Issues Related

to Query Optimization

 Displaying the system’s query execution plan

 Oracle syntax

 EXPLAIN PLAN FOR <SQL query>

 IBM DB2 syntax

 EXPLAIN PLAN SELECTION [additional options]

FOR <SQL-query>

 SQL server syntax

 SET SHOWPLAN_TEXT ON or SET

SHOWPLAN_XML ON or SET SHOWPLAN_ALL

ON

Slide 19- 43

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Additional Issues Related

to Query Optimization (cont’d.)

 Size estimation of other operations

 Projection

 Set operations

 Aggregation

 Outer join

 Plan caching

 Plan stored by query optimizer for later use by

same queries with different parameters

 Top k-results optimization

 Limits strategy generation

Slide 19- 44

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.8 An Example of Query

Optimization in Data Warehouses

 Star transformation optimization

 Goal: access a reduced set of data from the fact

table and avoid using a full table scan on it

 Classic star transformation

 Bitmap index star transformation

 Joining back

Slide 19- 45

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.9 Overview of Query Optimization

in Oracle

 Physical optimizer is cost-based

 Scope is a single query block

 Calculates cost based on object statistics,

estimated resource use and memory needed

 Global query optimizer

 Integrates logical transformation and physical

optimization phases to generate optimal plan for

entire query tree

 Adaptive optimization

 Feedback loop used to improve on previous

decisions
Slide 19- 46

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

Overview of Query Optimization in

Oracle (cont’d.)

 Array processing

 Hints

 Specified by application developer

 Embedded in text of SQL statement

 Types: access path, join order, join method,

enabling or disabling a transformation

 Outlines used to preserve execution plans

 SQL plan management

Slide 19- 47

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.10 Semantic Query Optimization

 Uses constraints specified on the database

schema

 Goal: modify one query into another that is more

efficient to execute

Slide 19- 48

Copyright © 2016 Ramez Elmasri and Shamkant B. Navathe

19.11 Summary

 Query trees

 Heuristic approaches used to improve efficiency

of query execution

 Reorganization of query trees

 Pipelining and materialized evaluation

 Cost-based optimization approach

 Oracle query optimizer

 Semantic query optimization

Slide 19- 49

